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Abstract

We examine a special property of Painlevé equations, namely possessing
folding transformations. The latter are relations of the solution of a given
Painlevé equation to the square of that of some other, which can be the same as
the initial one. They generally exist only for special values of the parameters
of a given equation. The present setting will be that of the quantum Painlevé
equations, which are systems where the dependent variables are noncommuting
objects. Both continuous and discrete cases are analysed and the folding
transformations are established in a perfect parallel between continuous and
discrete systems.

PACS numbers: 02.30.Ik, 03.65.Ca

1. Introduction

Why do some systems deserve the name of Painlevé equations? The original ones are the
second order, nonautonomous, nonlinear differential equations discovered by Painlevé [1]
and his group [2]. They were derived using what, in a modern parlance, would qualify as
singularity analysis. They were the result of an exhaustive search for equations the solutions
of which are devoid of movable critical singularities. This last property, later to be dubbed the
Painlevé property [3], can be considered as practically a definition of integrability. (Indeed,
in the absence of movable critical singularities, the integration of a nonlinear system should
not in principle present more fundamental difficulties than that of a linear one.) The predicted
integration of the Painlevé equations was indeed obtained. A first step was realized by Garnier
[4] who produced what we call today the Lax pairs for the Painlevé equations, i.e. he showed
that the latter result from the compatibility of a system of linear partial differential equations.
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The conclusive step was the integration of PII (that of the other Painlevé equations was soon
to follow) by Ablowitz and Segur [5], based on inverse scattering techniques.

The integrable character of the Painlevé equations confers them a host of special properties
[6]. Among them we can cite the fact that they organize themselves in a degeneration cascade,
can be written in a bilinear form, possess Lax pairs, Miura, Bäcklund and Schlesinger
transformations, special solutions for particular values of their parameters, their solutions
possess contiguity relations (the list being non-exhaustive). It is these special properties of
the Painlevé equations that allow us to answer the question we started this paper with. If a
system has many (most?) of the properties which characterize the Painlevé equations, then
it is reasonable to attribute the name of Painlevé to it. Perhaps the most famous example
of ‘new’ Painlevé systems are the discrete Painlevé equations [7] discovered in the past
decades. They are integrable second order, nonautonomous, nonlinear mappings which enjoy
practically all the properties of the Painlevé equations [8]. (The fact that their continuous
limit is a Painlevé equation is not conclusive per se. Discrete systems are more fundamental
than continuous ones and the fact that the continuous Painlevé equations were discovered first
is due to just historical reasons, and to our familiarity with differential rather than difference
systems.) Over the years, many more equations of the Painlevé variety were proposed:
ultradiscrete [9], delay-differential [10], supersymmetric [11] and quantum (both continuous
[12] and discrete [13]), the list being open for future additions. Not all of them share all the
properties of the continuous Painlevé equations, but they share enough to warrant the Painlevé
name.

This paper will be devoted to what we call quantum Painlevé equations, both continuous
and discrete. The term ‘quantum’ was coined in order to indicate systems where the dependent
variables are non-commuting objects. Continuous quantum Painlevé equations have been
studied in detail in a series of papers by one of the present authors (HN) [14]. Quantum
Painlevé equations are a quantization of Painlevé equations preserving the affine Weyl group
symmetries. Since Painlevé equations are Hamiltonian systems the quantization is introduced
by replacing the Poisson bracket by a commutator. As such a quantization is not unique the
quantum forms of Painlevé equations were determined in such a way that the latter have affine
Weyl group actions just as the classical Painlevé equations. The discrete analogues of the
quantum Painlevé equations have been the object of studies of the remaining authors [15].
The main difficulty in quantizing discrete systems, integrability notwithstanding, lies in the
fact that one must introduce a commutation rule consistent with the evolution. This is a highly
nontrivial problem. We have addressed this question in [16] where consistent commutation
rules have been proposed. The relation between continuous and discrete quantum Painlevé
equations were the object of joint work of the present authors in [17].

The property of Painlevé equations we shall focus on in the present work is that dubbed
‘folding’ by Okamoto, Sakai and Tsuda [18]. In the Okamoto et al terminology, folding
transformations are algebraic transformations of the Painlevé systems which give rise to a
non-trivial quotient map of the space of initial conditions. In a more elementary way, we
can say that folding transformations relate the solution of a given Painlevé equation to the
square of that of some other one (which can be the same as the initial one) [19]. The fact that
such quadratic relations exist can be traced back to the fact that the Painlevé equations have
singularities which, in general, can be simple or double poles (or zeros). Thus a quadratic
relation relates a solution which has only simple poles to one where all poles are double.
These relations generally exist only for special values of the parameters of a given Painlevé
equation. (One most interesting result of Okamoto et al was the discovery that PIV possesses a
folding transformation of degree three, mapping solutions into solutions of the same equation
for different values of parameters.) Let us present a simple example of a quadratic folding
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relation. We start with PII:

u′′ = 2u3 + tu + α (1.1)

in which we take α = 0. Multiplying by u and introducing w = u2 we obtain the equation

w′′ = w′2

2w
+ 4w2 + 2tw, (1.2)

which is equation XX in the Painlevé–Gambier classification [20].
The extension of folding transformations to a discrete setting was presented by some of the

present authors in [19]. We have shown that a nice parallel does exist between the properties of
the continuum systems and those of their discrete analogues. However, the discrete Painlevé
equations may possess some quadratic relations of their own, without reference whatsoever to
continuous systems. Let us illustrate this last point with a particular case of the d-PI equation

xn+1 + xn−1 + xn = zn

xn

, (1.3)

where z = αn+β for some constant α, β. We multiply by xn both sides of (1.3) and introduce
the variables X = x2 and yn = xnxn+1. We have thus from (1.3), yn + yn−1 + Xn = zn and,
from the definition of y,XnXn+1 = y2

n . Eliminating X between the two equations we obtain
for y the mapping

(yn+1 + yn − zn+1)(yn + yn−1 − zn) = y2
n. (1.4)

Equation (1.4) is another special form of a d-PI which was first obtained in [21]. Thus we have
established a quadratic relation, which is in fact a degenerate form of a Miura transformation,
between two d-PI’s [22].

Before proceeding to the details of the quantum setting, it is interesting to summarize
what is known in the commuting case which will serve as a canvas for our presentation. The
following quadratic relations exist between continuous Painlevé equations:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

i PII(α = 0) P20

ii PIII(α = β = 0) P(0)
III (γ = δ = 0)

iii PIII(α = −β) PV(α = β = 0)

iv PV(α = −β, γ = 0) PV(δ = 0, α = 0)

v PVI(α = β, γ = δ) PVI(α = β = 0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where by P(0)
III we denote the zero-parameter Painlevé III [23]. In what follows, we shall

present the quantum analogues of relations i to iv both for continuous and discrete cases. The
relation v which concerns PVI will be missing from the present paper, since the study of the
quantum form of PVI has not been fully completed yet [24]. Moreover, the third degree folding
of Okamoto et al will not be addressed. As a matter of fact this is a result still missing in the
discrete commuting case, despite the efforts of some of the present authors, in collaboration
with Sakai. We hope to return to these questions in some future work.

2. Quadratic relations for continuous quantum Painlevé equations

As we have seen in the introduction, for the commuting case a simple quadratic relation is
that relating PII to equation XX in the Painlevé–Gambier classification, and which is a limit
of equation XXXIV of the same classification, traditionally referred to as P34. Here we shall
present this folding for the quantum analogues of the equations. In [13] we have shown that
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the quantum analogues of PII and P34, two equations related by a Miura transformation, can
be written as

x ′′ = 2x3 − tx + β (2.1)

and

y ′′ = 1
2y ′y−1y ′ − 4y2 + 2ty − 1

2 (α2 − h̄2)y−1, (2.2)

where β = 2α − 1. The commutators of the dependent variables are [x, x ′] = 2h̄ and
[y, y ′] = 2h̄y. The folding transformation exists when β = 0. In this case, which is the
quantum equivalent of i, we introduce the variable w = −x2 which leads to the following
equation for w:

w′′ = 1
2w′w−1w′ − 4w2 − 2tw + 6h̄2w−1. (2.3)

This is the quantum form of P20. The commutation relation for the dependent variable is
[w,w′] = 8h̄w. It is interesting to cast this relation in the same form as that of P34, i.e.
[w,w′] = 2˜̄hw which shows that the ‘effective’ h̄, resulting form the folding is ˜̄h = 4h̄.

The second folding transformation we are going to examine, corresponding to case ii of
the introduction is that relating the Painlevé III equation to a different transcendental equation
which is known as the ‘zero-parameter’ PIII. We start from the quantum form of PIII obtained
in [17], given here in a slightly non-canonical form,

x ′′ = x ′x−1x ′ − x ′

t
+

x3

t2
+

αx2

t2
+

β

t
− x−1. (2.4)

The commutation relation of the dependent variable is [x, x ′] = h̄x2/t . Next we introduce the
quadratic relation w = x2 and, as in the commuting case, take α = β = 0. We find

w′′ = w′w−1w′ − w′

t
+

2w2

t2
− 2. (2.5)

The commutator is now [w,w′] = 4h̄w2/t . Equation (2.5) is indeed the zero-parameter PIII

albeit in a non-canonical form. It is elementary to put it in the same form as (2.4), which
makes the comparison easier. It suffices to introduce a new independent variable z = t2, with
a consequence a commutation relation [w,w′] = 2h̄w2/z where the prime now denotes the
derivative with respect to z instead of t. We obtain

w′′ = w′w−1w′ − w′

z
+

w2

2z2
− 1

2z
. (2.6)

Comparing (2.6) to (2.4) we see that the terms where the dependent variable appears in
powers three and minus one are absent while the terms quadratic in the independent variable
and constant have fixed coefficients, as should be the case for the zero-parameter PIII.

The third transformation, analogue to case iii, relates a special case of PIII to a special case
of Painlevé V. It is more convenient in this case to work with equations where the independent
variable appears in an exponential form. Our starting point is the Painlevé III equation in the
form

x ′′ = x ′x−1x ′ + e2t (x3 − x−1) + et (αx2 + β) (2.7)

with commutator [x ′, x] = h̄x2. In order to implement the folding transformation we take
β = −α. In perfect analogy to the commuting case we introduce the change of the variable
w = (x + 1)2(x − 1)−2. A straightforward although rather delicate calculation (requiring the
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assistance of computer algebra) leads to PV in the form

w′′ = w′
(

1

w − 1
+

1

2w

)
w′ − 3h̄2

32
(w − 1)2

(
w − 1

w

)
− 4αetw + 8e2t w(w + 1)

(1 − w)
. (2.8)

The commutation rule for the variable w turns out to be of [w′, w] = h̄w(w − 1)2.
The last transformation, analogue to case iv, relates two cases of PV. In the first the

parameters satisfy some relationships but still this PV is the generic one. The second one
(which results from the folding) is a special case of PV which is in fact related to PIII through
a Miura transformation. Here also, we work with the independent variable in an exponential
form. The starting point is the Painlevé V equation in the following form:

x ′′ = x ′
(

1

x − 1
+

1

2x

)
x ′ + α(x − 1)2

(
x − 1

x

)
+ et x(x + 1)

2(1 − x)
. (2.9)

We remark that a term proportional to et/2x is absent and that the two terms with
(x − 1)2 common factor have opposite coefficients. The commutator is simply [x ′, x] =
h̄x(x − 1)2. Next we introduce the folding transformation w = 1 − (x − 1)2(x + 1)−2. A less
straightforward and even more delicate than in case iii calculation leads to a new PV in the
form

w′′ = w′
(

1

w − 1
+

1

2w

)
w′ + (w − 1)2

(
5h̄2

2
w − α

w

)
+ etw. (2.10)

The commutation rule for the variable w turns out to be [w′, w] = −4h̄w(w − 1)2. The
absence of a term of the form e2tw(w + 1)/(1 − w) indicates that this special form of PV is
indeed a Miura transformed PIII. We may remark here that the coefficient of the (w−1)2w term
is proportional to h̄2: this is consistent with the fact that this term is absent in the commutative
case.

3. Quadratic relations for discrete quantum Painlevé equations

The first case we are going to examine here is the discrete analogue of case i, namely the
folding transformation between the discrete PII and the discrete form of P20. In what follows
the independent variable will be introduced through zn ≡ δ(n − n0). We start with the
‘standard’ symmetric (in the QRT [25] sense) form of d-PII

xn+1 + xn−1 = znxn

x2
n − 1

(3.1)

where we have taken the parameter which appears in the numerator of d-PII to zero (for
the folding transformation to exist). The quantum form of d-PII was first obtained in [26].
The commutation relation of the dependent variables is [xn+1, xn] = h̄. Next we introduce the
following folding transformtion. As in the commuting case, two variables are necessary.
We put yn = x2

n and for the second variable we distinguish the even and odd indices:
w2n = x2nx2n+1 − h̄/2 and w2n−1 = x2nx2n−1 + h̄/2. (We should point out here that the
h̄ shift is not one that could be absorbed by a simple symmetrization.) We find

wn + wn−1 = znyn

yn − 1
(3.2a)

complemented by

y2ny2n+1 = w2
2n − h̄2/4 (3.2b)

y2ny2n−1 = w2
2n−1 − h̄2/4. (3.2c)
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Given the form of (3.2a) it is possible to solve for y and thus eliminate it completely from the
equation. We obtain(

w2n + w2n−1

w2n + w2n−1 − z2n

) (
w2n+1 + w2n

w2n+1 + w2n − z2n+1

)
= w2

2n − h̄2/4 (3.3)

and (
w2n + w2n−1

w2n + w2n−1 − z2n

) (
w2n−1 + w2n−2

w2n−1 + w2n−2 − z2n−1

)
= w2

2n−1 − h̄2/4. (3.4)

Equation (3.3) is a quantum form of d-P20. The commutator of the w variables is [wn−1, wn] =
2h̄(wn + wn−1)(wn + wn−1 − zn)/zn.

At this stage it is interesting to relate the quantum form of d-P20 (which we recall is a
special form of d-P34) to a (quantum form of) d-PII. We start by introducing the variable
u and again distinguish the even and odd indices. We have u2n = y−1

2n (w2n − h̄/2) and
u2n+1 = y−1

2n+2(w2n+1 + h̄/2). Given these definitions u has a very simple expression in terms
of the variable of d-PII: u2n = x−1

2n x2n+1 and u2n+1 = x−1
2n+2x2n+1. After a lengthy calculation

we obtain the following equation:

zn(un + un−1)
−1 + zn+1(un + un+1)

−1 = u−2
n +

(
zn +

δ

2
(1 + (−1)n) + (−1)nh̄

)
u−1

n − 1, (3.5)

which is the quantum form of what is usually called the ‘alternate’ d-PII in the form we obtained
in [27]. (The expression (zn + δ(1 + (−1)n)/2) in the rhs of (3.5) means that the independent
variable dependence is zn+1 when n is even and zn when n is odd.) We complement this
analysis by the commutator of the variables u: [un−1, un] = 2h̄(un−1 + un)

2/zn. Given the
form of this commutator we remark that un does indeed commute with the lhs of (3.5).

The next case, which is the discrete analogue of ii, is a folding transformation on the
quantum discrete form of Painlevé III. We start from the q-discrete PIII:

xn+1xn−1 = q
(xn − azn)(xn − bzn)

(1 − cxn)(1 − dxn)
, (3.6)

where zn = z0λ
n. We have shown in [15] that the consistent commutation relation here

is xn+1xn = qxnxn+1. As in the commuting case the folding transformation requires two
constraints b = −a and d = −c, leading to

xn+1xn−1 = q
x2

n − a2z2
n

1 − c2x2
n

. (3.7)

We can now introduce w = x2 and obtain for w the equation

wn+1wn−1 = q4

(
wn − a2z2

n

)(
wn − a2z2

n

/
q2

)
(1 − c2wn)(1 − c2q2wn)

. (3.8)

The commmutation relation is now wn+1wn = q4wnwn+1 which is consistent with the presence
of q4 in the rhs of (3.8).

Since the case we treat here is the discrete analogue of case ii we expect the folding
transformation to relate a special case of PIII to the zero-parameter PIII. However a priori
nothing distinguishes (3.7) from (3.8). The answer to this paradox can be found in the
continuous limit. In order to obtain the full continuous PIII from (3.6) we must introduce a
small parameter ε, put q = 1 + εh̄, a = γ ε + αε2, b = −γ ε + αε2, c = δε + βε2, d = −δε +
βε2 and take the limit ε → 0. We obtain for x the continuous PIII involving four parameters,
α, β, γ and δ (and the standard form of PIII corresponds to taking γ = δ = 1). The folding
transformation requires α = β = 0 and (3.7) is compatible with this while keeping γ = δ = 1.
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However, for (3.8) the continuous limit (where q → 1) is only possible for γ = δ = 0 which
precisely corresponds to the zero-parameter PIII.

The third folding, iii, relates a special case of Painlevé III to a special case of Painlevé V.
In analogy to the continuous case we shall start from a PIII which belongs to the family of what
we have dubbed in [28] the ‘master d-PII’ equation. Its form involving commuting objects is

zn+1

1 − xnxn+1
+

zn

1 − xnxn−1
= zn+1/2 + a

1 − x2
n

/
t

+
zn+1/2 − a

1 − tx2
n

, (3.9)

which can be split into the system

yn + yn+1 = zn+1/2 + a

1 − x2
n

/
t

+
zn+1/2 − a

1 − tx2
n

(3.10a)

xnxn−1 = yn − zn

yn

. (3.10b)

We know that x and y are noncommuting objects and introduce the commutators (following
our results in [16]) [xn, yn] = h̄xn and [xn−1, yn] = −h̄xn−1. The quantum form of (3.10)
involves explicit quantum corrections

yn + yn+1 = zn+1/2 + a

1 − x2
n

/
t

+
zn+1/2 − a

1 − tx2
n

+ h̄ (3.11a)

xnxn−1 = yn − zn − h̄/2

yn − h̄/2
. (3.11b)

From (3.11b) we obtain, with the appropriate use of commutators, the equation

x2
nx

2
n−1 = (yn − zn)

2 − h̄2/4

y2
n − h̄2/4

. (3.12)

The folding transformation is now simply w = x2, which leads to the system

yn + yn+1 = zn+1/2 + a

1 − wn/t
+

zn+1/2 − a

1 − twn

+ h̄ (3.13a)

wnwn−1 = (yn − zn)
2 − h̄2/4

y2
n − h̄2/4

. (3.13b)

System (3.13) is the quantum form of (a special case of) an equation obtained in [29] and which
is a discrete analogue of Painlevé V. Thus we have established the quantum analogue of the
discrete case iii folding. The commutator of w with y can be calculated in a straightforward
way. We find [wn, yn] = 2h̄wn and [wn−1, yn] = −2h̄wn−1.

The final folding case is the one relating two forms of PV, i.e. the quantum discrete
analogue of case iv. Our starting point is a q-discrete Painlevé V which in the noncommuting
case can be written as [16]:

(xn+1xn − 1)(xnxn−1 − 1) = q
1 + αxn + βx2

n + qαx3
n + q2x4

n

1 + γ znxn + δz2
nx

2
n

, (3.14)

where zn = z0λ
n. The commutation relation of the dependent variable is xn+1xn =

qxnxn+1 + 1 − q which can be rewritten as (xn+1xn − 1) = q(xnxn+1 − 1). In order to
implement the folding transformation we take α = γ = 0 and introduce the variable y = x2.

7
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Moreover an auxiliary variable is necessary at this point and we introduce wn = xnxn−1 − 1.
We can now split (3.14) into

wn+1wn = q
q2y2

n + βyn + 1

1 + δz2
nyn

(3.15a)

and a second equation obtained in an elementary way

ynyn−1 = (wn + 1)(qwn + 1). (3.15b)

We can easily check that the commutation relations are ynwn = q2wnyn and wnyn−1 =
q2yn−1wn. It is interesting at this stage to rescale y introducing v = y

√
q. The commutation

relations between w and v are the same as those for w and y. The equations are now

wn+1wn = q2 v2
n + β̃vn + 1

1 + δ̃z2
nvn

(3.16a)

vnvn−1 = q2(wn + 1)(wn + 1/q), (3.16b)

where β̃ = βq−3/2 and δ̃ = δq−1/2. System (3.16) is the appropriate quantum form of
(a reduced case of) asymmetric q-PIII. Because of the absence of a denominator in (3.16b) the
continuous limit of this asymmetric q-PIII is not PVI [30] but PV and, in fact, a PV with one
missing parameter. This is precisely the PV which is the Miura transformed PIII. Moreover,
when we go to the continuous limit, which implies q → 1, one more parameter is absent in
the resulting PV.

4. Conclusions

In this paper we have studied the folding transformations which exist for continuous and
discrete quantum Painlevé equations. We have established a perfect parallel between the
transformations which exist for the ‘standard’ commuting Painlevé equations and their
noncommuting, quantum, analogues. As we have explained in previous publications of ours,
the discrete domain presents additional difficulties. Not only must one introduce the proper
commutation rules which have to be compatible with the discrete evolution but one must also
choose the proper discrete systems which will be related by the folding transformation. This is
due to the fact that the continuous limit of some discrete equation is too strong a reduction and
one cannot base predictions on this feature alone. Thus, for instance, the folding transformation
which for continuous systems exists between PIII and the zero-parameter PIII has as discrete
analogue a folding transformation between two different PIII s: only at the continuous limit is
the distinction between full PIII and zero-parameter PIII established.

While we have striven to make this paper as complete as possible, it is clear that the
question of folding transformations for quantum Painlevé equations has not been exhausted.
In particular it will be interesting to study the folding transformations on the quantum discrete
and continuous forms of PVI. However, this is not immediately possible given the present
state of our knowledge since the study of the quantum continuous PVI is not yet complete,
to say nothing of that of its discrete analogue. Another most interesting result would be the
derivation of the folding transformation for the Painlevé IV equation, which in the continuous
case was shown by Okamoto and collaborators to be of third degree. Unfortunately, the result
is missing already for the discrete system even in the commuting case and thus the extension to
the noncommuting setting will have to wait for some progress. We hope to be able to address
these questions in some future work of ours.
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